Hydrodynamic limit for a Fleming–Viot type system

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic Limit for a Fleming-Viot Type System

We consider a system of N Brownian particles evolving independently in a domain D. As soon as one particle reaches the boundary it is killed and one of the other particles is chosen uniformly and splits into two independent particles resuming a new cycle of independent Brownian motion until the next boundary hit. We prove the hydrodynamic limit for the joint law of the empirical measure process...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A hydrodynamic limit for chemotaxis in a given heterogeneous environment

In this paper the first equation within a class of well known chemotaxis systems is derived as a hydrodynamic limit from a stochastic interacting many particle system on the lattice. The cells are assumed to interact with attractive chemical molecules on a finite number of lattice sites, but they only directly interact among themselves on the same lattice site. The chemical environment is assum...

متن کامل

Incompressible Type Limit Analysis of a Hydrodynamic Model for Charge-Carrier Transport

Abstract. This paper is concerned with the rigorous analysis of the zero electron mass limit of the full Navier-Stokes-Poisson. This system has been introduced in the literature by Anile and Pennisi (see [5]) in order to describe a hydrodynamic model for charge-carrier transport in semiconductor devices. The purpose of this paper is to prove rigorously zero electron mass limit in the framework ...

متن کامل

Tagged Particle Limit for a Fleming-Viot Type System

We consider a branching system of N Brownian particles evolving independently in a domain D during any time interval between boundary hits. As soon as one particle reaches the boundary it is killed and one of the other particles splits into two independent particles, the complement of the set D acting as a catalyst or hard obstacle. Identifying the newly born particle with the one killed upon c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2004

ISSN: 0304-4149

DOI: 10.1016/j.spa.2003.10.010